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Abstract—The onset of thermal convection in plane Poiseuille flow is investigated theoretically. New
stability equations are derived by using the propagation theory considering the variations of disturbance am-
plitudes in the main flow direction. In the thermal entrance region an analytical procedure to predict the cri-
tical conditions for extremely small Prandtl-number fluids is described, based on the local similarity. For
x=0.01 the critical Rayleigh numbers are well represented in the whole domain of the Prandtl number by

Rac = 200(1 + 0.123Pr )x.!

under the conventional boundary layer theory. It is of much interest that the time-independent, three dimen-
sional disturbances become more stable with a decrease in the Prandtl number.

INTRODUCTION

When a horizontal fluid layer is heated from below,
buoyancy-driven convection occurs at high heating ra-
tes. In order to make an accurate heat transfer pre-
diction it is necessary to examine the stability of a fluid
layer. Furthermore the onset conditions of natural con-
vection may be deeply interrelated with turbulent ther-
mal convection, as was indicated by Howard[1]. The
occurrence of longitudinal vortex rolls in plane Poise-
uille flow due to buoyant force has been observed by
several investigators(2-8].

The instability problem in the thermal entrance re-
gion for plane Poiseuille flow of a Newtonian fluid
layer heated isothermally from below was analysed
first by Hwang and Chengl9]. In their analysis the dis-
turbance amplitudes were assumed to be independent
of the main flow direction. Their predictions on the
critical Rayleigh number marking the onset of thermal
convection were two orders of magnitude lower than
the existing experimental data of water and air [3-5,8].
Yeo and Choil[10] analysed this problem bv assuming
the bottling effect of temperature disturbances confined
within the thermal boundary layer. For large Prandtl
numbers their analytical predictions were close to ex-
perimental data.

Very recently Kim and Choil11] reformulated the
stability equations by using the propagation theory in-
troduced by Choi et al.[12], wherein the variations of
disturbances in the main flow direction are conside-
red. The two predictions of Yeo and Choil10] and Kim
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and Choi(l1] for large Prandtl number fluids we.
almost the same. Ahn and Choil8] complemented the
results of Kim and Choi[11] by producing the critical
conditions for cases of extremely small Prandtl num-
bers. They neglected the disturbance of a velocity com-
ponent in the main flow direction. Their results show
that the critical Rayleigh number increases with a de-
crease in the Prandt! number, on the contrary tc those
of Hwang and Cheng(9].

The purpose of this present study is to extend the
work of Ahn and Choi(8] by generating the new sta-
bility equations implying Prandtl's boundary layer
concept and producing the related critical conditions.
The analytical illustration will be limitted to the sys-
tems of extremely small Prandtl numbers.

THEORETICAL ANALYSIS

1. Base Temperature

The system considered here is the thermal en-
trance region of a Newtonian fluid confined between
two horizontal infinite plates as shown in Fig. 1. The
fluid temperature is uniform at T, for X<0 and there is
a step change in the bottom temperature to a higher
value T, at :he position X = 0. The fluid properties are
assumed constant and the viscous dissipation of en-
ergy is neglected. The velocity field is fully developed
in the form of plane Poiseuille flow. We take the layer
depth d as the unit of length, the temperature dif-
ference (To-T,) as the unit of base temperature and the
mean velocity U, as the unit of base velocity. Then the
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Fig. 1. Schematic diagram of system.

dimensionless base temperature profile can be obtain-
ed for pure forced convection by neglecting the axial
heat conduction, as usual[10,13}:
26, 96
u, =y
¢ ox o7
where x = X/ (dPe) and z = Z/d. The bourdary condi-
tions are
£, 0,72 =60.%1:=68,x0)-1=0 (2)

(1)

The exact solution brings mathematical difficulty in
the stability analysis. Therefore we simplify the base
temperature profile by using the integral methodi14}:

- 2t Lpyg- 3
bo=[1= 5 ¢t 5 ) 1-Hey) (3)

where £=2/8,. His a unit step function and & is the
dimensionless thermal boundary layer thickness hav-

ing the value of (lfx)m. This approximate solution is

in good agreement with the exact one in the region of
x<(.01. Since we are primarily concerned with the re-
gion of &, € 1, the base velocity profile is approxima-
ted as follows:

Lo=68:¢ (4)

The above approximation is based on the relation of
8r » 8% . Now we will see how the above approximate
solutions (3) and (4) contribute to the stability analysis.
2. Formulation of Amplitude Equations

In the thermal entrance region of &t <1 the in-
finitesimal perturbations are superimposed on the
base velocity, temperature and pressure fields. Using
the linear stability theory under the Boussinesq ap-
proximation, we obtain the following time-indepen-
dent neutral disturbance equations in dimensionless
form:

_1__. aul au“ —, - ‘L_a& =4
Pr [“°ax JrW'az J=vu, Pe? ax (5)
1 22&_%2@’ —pip?
pr WV S - 5 S =V IV W,
1 2%, , '8 ©)
Pe? ax’ ay?
88 oo 9bs | 86, _ o, i
Uo 3y +Ra (u, % +w, 2z y=V?g, (7)
1 2°() o (+) a’(-)
where v? (. ) =— + Pr
re v P ox* ay* t az*

denotes the Prandtl number and Ra the Rayleigh
number. it should be noted that the temperature
disturbance, T’ is non-dimensionalized by 8,=
RaT '/ AT, which is different from other works [9-12,
151, By invoking the conventional boundary layer
theory, all the terms involving 1/Pe? are neglected in
equations (5} to (7). The pressure term in equation (5)
disappears, which means that the pressure gradient in
the main flow direction is maintained at the value of
basic state around the onset. Accordingly, the second
term in the left-hand side of equation (6) is neglected.
Hwang and Cheng(9] neglected all the disturbance
terms involving the x-derivatives and Ahn and Choil[8]
set u, to zero. Therefore the present disturbance equa-
tions are completely different from the previous
ones.

Now a new set of dimensionless variables is defin-
ed by using the vertical length scale of the dimension-
less thermal boundary layer thickness &r:

U, Sru*(o
1 v 2 V*(;‘} ‘
"= : | ~expliay) (8)
w, Srw* ()
8, a* (&)

where the superscript *' refers to the transformed
amplitude of each disturbance term and ‘a” indicates
the dimensionless wave number meaning the trans-
verse periodicity of disturbances. Substituting equa-
tions (4) and (8) into the resulting disturbance equa-
tions (5) to (7), we can generate the new amplitude
equations:

L= Bipp-gputtows) - D -aun 9
%[— 12—5 (gD —a** I’ D+2a* o)w?*)
= DI-a*)w*—a*¢* (10

- R epgrrat- §out rwhine,
= (D-a*) g* (1)

where D()=d(}/d¢, a*=aé, and Ra* =Rasl. Ex-
perimental evidences have shown that the new para-
meters a* and Ra* having the vertical length scale of
&, would be kept constant for x<0.1{3-5]. Up to this
point the related concepts represent the essence of the
propagation theory. It is surprising that the concept of
local similarity is realized in this procedure.

For the limiting case of Pr—co the stability criteria
were reported by Kim and Choill1]. It is noted that
their stability equations involving the effect of the
Prandt] number are not quite general. But their stabili-
ty criteria are exactly the same as those based on equa-
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tions (9) to (11) since u; disappears for the infinite
Prandtl number case. Therefore we proceed to analyse
the instability for the limiting case of Pr—0. As the
Prandtl number decreases, the corivective terms rela-
ted with u* and w* in equations (9) to (10) become im-
portant. Then in the case of Pr—0 the stability equa-
tions can be formulated as

F Ju¥=a**PrRa*D g, (*D-5¢juf

for 0=¢<1 (12)
FDu=0 for ¢t=21 13
where
FD)= (D'+ C ‘D-a*) (£D*-a**’d

+za*=§)(§ D-41) 19

The subscripts ‘i' and ‘o’ refer to the inner and the
outer region of the thermal boundary layer, respective-

ly.
The proper boundary conditions are constructed as
=g*=0 at¢=10 (15)
Y wrerDWr—0 asf—o 16)

These conditions satisfy those of flat surfaces with con-
stant temperature. Since a slip condition sheould be ap-
plied to the case of Pr—0, the conditions of u* = Dw*
= 0 at the bottom rigid boundary are relaxed. The cor-
responding boundary conditions in terms of u* are
produced from equations (3) and (10). The interface
conditions at {=1 are constructed by considering
equations (12) to (13):

DM¥-D™u%=0;n=0,1,2,3,4.5 awn

Now the problem is to find the minimurn value of
PrRa* and its corresponding wave number to satisfy
all the above equations (12) to (17). These values are
the critical conditions marking the onset of natural
convection in the form of longitudinal vortex rolls.

SOLUTION PROCEDURE

The solution of the inner region of thermal boun-
dary layer is found by the Frobenius method as fol-
lows:

L)
=xC, 1, (18)

i=1

where f{{) = nZZ Bt C; is an arbitrary constant and
B, is obtained from the recursion formula generated
from equation (12). By applying the boundary condi-
tions (14), u} is easily obtained:

uf=C,f, +Cif, +C,f,+C4f, 19
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where
f=1- & g2 SRS
2 3 144 PrRa C + 201
—_ 6 —
f,=t- 15750 PrRa" -+~ + 91)
f=pit
T 211680 2

23a*!
7200

To obtain the solution of the outer region we divide
equation (13) into two equations as follows:

fs fln§+ — -

OPH+-+-+-

D+ 1253 ¢D-a*)Y=0 04
£ D'=a*t) (¢D-2) ¢ (¢D-4)ut=Y 2

Equation (24) can be solved by employing the WKB
method:
§
Y(é‘):exp[— i;’—f (@_ﬂt+§,’
4 2
+at2)1/2 ] /(_2_2~§‘§4+ 2 §+a*2)1/4 (26)
which satisfies the upper boundary condition of §*—(
i.e., Y=0, as § »oo. By approximating this solution as
the appropriate power-series forms, the solution of
equation (25) can be found as follows:

~Cifyt e £ Quig-1)Hheemey

kéan(c—l)"] e
where

~pte S T S e

(,_€+3m)§)/%e‘j"dn 29

f{¢) is the homogeneous solution of uy. The coeffi-
cients Q, and R, can be easily obtained from the recur-
sion formulae by following the procedure illustrated in
the work of Yoo et al.[15], which are valid near {=1.
The above solution satisfies the upper boundary con-
ditions (16).

The remaining interface conditions (17) make it
possible to generate the following secular equation:
£, &, f f £ 0
f(zli f(;” f(‘lr f(.l) fl1l',‘ 0
f{;) fl;) f(‘z) f('z) f\]ﬂ 0
f(zﬁ) ffi!\ f(‘J) f(:) fe,!) 0
£ £8P £ ~Y()
P 19 P eYQ)-Y™M(D
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Fig. 2. Base temperature profile.

where the superscript (n) indicates the order of differ-
entiation with respect to §. Once eigenvalues of PrRa*
and a* are found, we can construct the stability dia-
gram and obtain u*. Then w* and 6* can be computed
by using equations (9) and (10), respectively. The
spanwise velocity v* can be found from the equation
of continuity as follows:

v = {Z {(¢D-4)u*—Dw*)/a* 130)

RESULTS AND DISCUSSION

By involving the streamwise velocity disturbance
u; with 90, =(, the stability diagram is obtained in
Fig. 3 according to the procedure outlined in the prece-
ding section. The solid curves indicate the present
results, while the dotted curve represents those of
Ahn and Choil8] for the case of u; =0 and op %0,
The present critical conditions are found: X

PrRa*=92.2 and a¥=1.64 for Pr—0 B31)

This means that for extremely small Pr and &, the se-
condary flow of natural convection may occur with the
three component velocity field of u,, v, and w, char-
acterized by the conditions (31), independently of
time. If we invoke the principle of exchange of stabi-
lities as usual, the magnitudes of disturbances will be
amplified with time in the hatched unstable region but
it will be deamplified with time in the stable region.
This principle excluding the possibility of wave insta-
bilities has been used in most of thermal instability
problems. For large Pr fluids this is justified by experi-
mental evidences[2-8]. It is unfortunate that for extre-
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Fig. 3. Stability diagram.

mely small Pr fluids its validity remains an unresolved
problem.
Ahn and Choil8] obtained the critical conditions of

PrRa} =212.1 and a¥ = 3.14 with u; =0 and %#0.

These values are almost two times higher than those
in equation (31). Therefore the existence of u, seems to
make the system more unstable. This is justified by ex-
amining Fig. 4, which shows that at the critical condi-
tion two convective heat transport terms of velocity

disturbances have the same sign. It appears evident
that the termu,%iihas the adverse effect on the stabi-

lity in addition to the term w; aﬁv, on the contrary to

the effect of the term uoaAZ'. The last term is already

known to have the stabilizing effect(11,12,15].
In order to examine the disturbance fields the am-

Normalized Quantities

Fig. 4. Effect of convective terms of velocity distur-
bances at critical condition.

Korean J. Ch. E. (Vol. 5, No. 2}



174 D.J. AHN and C.K. CHO!

4 T T
a* =100
& 2% PrRa* = 134.2 J
=
2 u*

i ~ 1
P —_—
0 k= ===

3 - I'e
L |
£ J
22
_4 n 2
0 2 1
¢

Fig. 5. Distribution of amplitudes of disturbances at
PrRa* = 134.2 and a* = 1.00.

plitude functions of velocity and temperature distur-
bances are normalized in terms of the maximum value
of absolute magnitudes of w* and 8*, respectively. The
normalized amplitudes, the streamlines and the iso-
therms of disturbances at two points placed on the
neutral stability curve I are plotted in Figs. 5 to 10 in
turn. Though the velocity field of disturbance is three
dimensional, it is, however, possible to introduce the
streamn function based on the axisymmetry in a y-z
plane for a fixed x. And the isotherms given here in-
dicate the temperature fluctuation of the secondary
flow. At the point of PrRa* = 134.2 and a* = 1.00 the
velocity disturbances constitute semi-circular stream-
lines in the projected y-z plane and the temperature
disturbance is mainly confined within the basic ther-
mal boundary layer. These are illustrated in Figs. 5 to
7. The slip condition of u* at the bottom boundary
gives birth to the streamwise velocity at {=0. The
counterclockwise movement along the curve 1 is foll-
owed by the another cellular motion over the lower se-
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Fig. 6. Streamlines of disturbances at PrRa* = 134.2
and a* = 1.00.
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Fig. 7. Isotherms of disturbances at PrRa* = 134.2

and a* = 1.00.

mi-circular motion due to the inversion of the tem-
perature disturbance, as shown in Figs. 8 to 10. The
latter motion becomes smaller and finally fades away
during the successive advance. The neutral stability
curve I generates the almost regular logitudinal
vortex-type instabilities, as illustrated in Fig. 11. This
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Fig. 8. Distribution of amplitudes of disturbances at
PrRa* = 178.7 and a* = 2.34.
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Fig. 9. Streamlines of disturbances at PrRa* = 178.7
and a* = 2.34.
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Fig. 10. Isotherms of disturbances at PrRa* = 178.7
and a* = 2.34.

figure represents those amplitudes for the miniraum
value of PrRa* on the curve I, and the disturbance
patterns are similar to those in the work of Ahn and
Choi[8]. Therefore it is expected that the distinction
between the two inner curves will disappear at the
high PrRa* region, wherein the lower semi-circular
rmotion becomes negligible.

The above-mentioned trend is very peculiar in
comparison with the conventional stability diagrams.
The curve | is very similar to that of wave instability
and the curve Il to that of regular longitudinal vortex
instability. It is well known that the latter-type stabili-
ty diagram prevails at large Pr cases[9-12,15]. There-
fore it may be stated that the resultant secondary mo-
tion becomes simplified with an increase in Pr, leading
to the regular vortex roll. Meanwhile through these
figures it is known that the magnitude of v* is inver-
sely proportional to the wave number according to
equation (30).

The conditions (31) marking the onset of natural
convection for Pr—0 are of much interest, here. The
disturbance amplitudes decay so sharply for {>1. It
should be noted that the present critical values are

wy
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Fig. 11. Distribution of amplitudes of disturbances
at PrRa* = 645.4 and a* = 6.20.
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Fig. 12. Effect of Prandtl number on critical condi-
tions.

valid if &; € 1. By combining these values with the
results of Kim and Choi[11] for Pr— oo , the critical con-
ditions in the thermal entrance region may be repre-
sented in the whole domain of Pr as follows:

Ra x. =200 (1+0.123/Pr) 82
agx.—2.02(1-0.088/ (Pr+0.211)) 33

These relationships are plotted in Fig. 12, which
shows that the effect of the Prandt! number is almost
negligible for Pr=1. In this connection more refined
work is now in progress in our laboratory.

The present analysis involves the term uo%to

stabilize the flow. Hwang and Cheng(9] neglected this
term and they reported that for Pe— oo the critical Ray-
leigh number decreases with a decrease in Pr for a
given x.. It seems evident that their critical conditions

96, has the much
Ix

are unreasonable, for the term u,
stronger stabilizing effect in comparison with the des-

tabilizing effect of the term Ra ul—a—oxﬂin equation (7).

The experimental evidences are available only for air
[3-5] and water[8]. The present analysis makes predic-
tions close to experimental data as compared in Fig.
12. It is noted that the secondary motion of vortex-type
convection will require a growth distance to manifest
detection. The experimental study for small Prandtl
number fluids is in great request. It is very interesting
that the critical Rayleigh number predicted in this
study is in good agreement with the experimental
result given by Jorné and Labelle[16] for the electro-
chemical mass transfer system.

CONCLUSION
The onset of thermal instability in the thermal en-
trance region of plane Poiseuille flow has been ex-

amined by the propagation theory. For x,<0.01 the
critical Rayleigh numbers are represented by

Korean J. Ch. E. (Vol. 5, No. 2)
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Ra. = 200(1 + 0.123Pr )x_"’
under the conventional boundary layer theory. The
present analysis introducing the three component
velocity field of disturbance made predictions in close
agreement with experimental data. It seems evident
that the results of Hwang and Cheng[9] lose the validi-
ty.
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NOMENCLATURE

a : dimensionless wave number

a* : modified wave number {=aé]

d : depth of fluid layer (m)

g : gravitational acceleration (m/sec?)

i . complex number

P - pressure (N/m?)

p . dimensionless pressure [=Pd?/a/ 4]

Pe : Peclet number [=PrRe]

Pr : Prandtl number [= v/ ]

Ra : Rayleigh number (=g #d*AT/a/v]

Ra* . modified Rayleigh number [=Ras%]

Re : Reynolds number [=U,d/v]

T . temperature (K)

T, : temperature of inlet flow and upper rigid
boundary (K)

T, . temperature of heated bottom plate (K)

AT . temperature difference between bounda-
ries [=T»T )] (K)

U, V, W velocities in rectangular coordinates (m/
sec)

U, . mean basic flow velocity (m/sec)

u, v, w : dimensionless velocities [=(U/Pe, V, W)
d/e}

u, : dimensionless base flow velocity [=U,/
Ul

X, Y, Z : positions in rectangular coordinates (m)

X, v,z : dimensionless position [=(X/Pe, Y, Z)/d]

Greek Letters

a . thermal diffusivity (m2/ sec)

B . thermal expansion coefficient (//K)

Ar . thermal boundary layer thickness (m)

or : dimensionless thermal boundary layer
thickness [= 4 4/d]

4 . similarity variable [=z/ 7]

6 : normalized isotherm of disturbance

B : dimensionless base temperature {=(T-T,)/
AT]

6, : dimensionless temperature disturbance

September, 1988

[=RaT’/ AT]
M . viscosity (kg/m/sec)
v : kinematic viscosity (mzl seC)
¢ normalized stream function of disturbance
Subscripts
b : base quantity
C : critical condition
i : inner region of thermal boundary layer
0 : outer region of thermal boundary layer
0 . dimensionless base quantity
1

: dimensionless disturbance quantity

Superscripts

n,(n) . order of differentiation with respect to ¢ in
equations (17) and (29), respectively

: amplitude function of disturbance

. . disturbance quantity

*
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