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Abstract--The onset of thermal convection in plane Poiseuille flow is investigatedtheoretically. New 
stability equations are derived by using the propagation theory considering the variations of disturbance am- 
plitudes in the main flow direction. In the thermal entrance region an analytical procedure to predict the cri- 
tical conditions for extremely small Prandtl-number fluids is described, based on the local similarity. For 
xc~0.01 lhe critical Rayleigh numbers are well represented in the whole domain of the Prandtl number by 

Rac = 200(1 + 0.123Pr-1)Xc -i 
under the conventional boundary layer theory. It is of much interest that the time-independent, three dimen- 
sional disturbances become more stable with a decrease in the Prandtl number. 

INTRODUCTION 

When a horizontal fluid layer is heated hom below, 
buoyancy-driven convection occurs at high heating ra- 
tes. In order to make an accurate heat transfer pre- 
diction it is necessary to examine the stability of a fluid 
layer. Furthermore the onset conditions of natural con- 
vection may be deeply interrelated with turbulent ther- 
mal convection, as was indicated by Howard[l]. The 
occurrence of longitudinal vortex rolls in plane Poise- 
uille flow due 1o buoyant force has been observed by 
several investigators[2-8]. 

The instability problem in the thermal entrance re- 
gion for plane Poiseuille flow of a Newtonian fluid 
layer heated isothermally from below was analysed 
first by Hwang and Cheng[9]. In their analysis the dis-. 
turbance amplitudes were assumed to be independent 
of the main flow direction. Their predictions on the 
critical Rayleigh number marking the onset of therma]L 
convection were two orders of magnitude lower than 
the existing experimental data of water and air [3-5,8]. 
Yeo and Choi[10] analysed this problem by assuming 
the bottling effect of temperature disturbances confined 
within the thermal boundary layer. For la!rge Prandtl 
numbers their analytical predictions were close to ex.- 
perimental data. 

Very recently Kim and Choi[11] reformulated the 
stability equations by using the propagation theory in- 
troduced by Choi et al.[12], wherein the variations of 
disturbances in the main flow direction are conside- 
red. The two predictions of Yeo and Choi[10] and Kim 

and Choi[l l ]  for large Prandtl number fluids we. 
almost the same. Ahn and Choi[8] complemented the 
results of Kim and Choi[11] by producing the critical 
conditions for cases of extremely small Prandtl num- 
bers. They neglected the disturbance of a velocity com- 
ponent in the main flow direction. Their results show 
that the critical Rayleigh number increases with a de- 
crease in the Prandtl number, on the contrary to those 
of Hwang and Cheng[9]. 

The purpose of this present study is to extend the 
work of Ahn and Choi[8] by generating the new sta- 
bility equations implying Prandtl's boundary layer 
concept and producing the related critical conditions. 
The analytical illustration will be limitted to the sys- 
terns of extremely small Prandtl numbers. 

THEORETICAL ANALYSIS 

1. Base Temperature 
The system considered here is the thermal en- 

trance region of a Newtonian fluid confined between 
two horizontal infinite plates as shown in Fig. 1. The 
fluid temperature is uniform at T1 for X<0 and there is 
a step change in the bottom temperature to a higher 
value T 2 at ,'h'h~position X = 0. The fluid properties are 
assumed constant and the viscous dissipation of en- 
ergy is neglected. The velocity field is fully developed 
in the form of plane Poiseuille flow. We take the layer 
depth d as the unit of length, the temperature dif- 
ference (T2-T1) as the unit of base temperature and the 
mean velocity Um as the unit of base velocity. Then the 
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Fig. I. Schematic diagram of system. 

dimensionless base temperature profile can be obtain- 
ed for pure forced convection by neglecting the axial 
heat conduction, as usual [10,131: 

cg&, a2&, (t/ 
u,,-ax az' 

where x = Xt (dPe) and z = Ztd. The boundary condi- 
tions are 

~',~'0, z .... 0,.,x. 1 : = & ix, 0) - 1 =0 (2) 

The exact solution brings mathematical difficulty in 
the :stability analysis. Therefore we simplify the base 
temperature profile by using the integral method[14]: 

6o= [1-  ~- ~'+ ~"] (1- H,-_, ) (3) 

where ~'= zl~r. H is a unit step function and ~r is the 
dimensionless thermal boundary layer thickness hav- 
ing Ihe value of (~x )  lt3. This approximate, solution is 

in good agreement with the exact one in the region of 
x~O.01. Since we are primarily concerned with the re- 
gion of 8r << 1, the base veh)city profile is approxima- 
ted as follows: 

Uo=6&~" (4) 

The above approximation is based on the, relation of 
b'r > ~ �9 Now we will see how the above approximate 
solutions (3) and (4) contribute to the stability analysis. 
2. Formula t ion  of  A m p l i t u d e  Equat ions  

In the thermal entrance region of 6T 4:1 the in- 
finitesimal perturbations are superimpo~d on the 
base, velocity, temperature and pressure fields. Using 
the linear stability theory under the Boussinesq ap- 
proximation, we obtain the following time-indepen- 
denl neutral disturbance equations in dimensionless 
form: 

1 ~ _ _ _ _ a u ~  , OUo~ 1 apL (5) 
Pr LU~ t W ' o z  j=IV'u~ Pe '  ax  

1 [UoV~Dw~ Ow, o 'uo .  
~ T  ax ax  5 - ~ / J = V ' V ' w  

§ 1 a'o~ ~ a 'o ,  (6) 
Pe '  a x '  a y '  

O0~ , ~  , OOo , aOo 
Uo--~- •  tu, O x  •  ) =7"0~ (7) 

a '  - )  
1 D' ( . )  .4- a : ( ' )  + _ + _ _  Pr where V'  ( ) Pe ~ a x '  a y '  ,gz' 

denotes the Prandtl number and Ra the Rayleigh 
number. It should be noted that the temperature 
disturbance, T '  is non-dimensionalized by 0]= 
RaT'/AT, which is different from other works [9-12, 
15]. By invoking the conventional boundary layer 
theory, all the terms involving 1/Pe 2 are neglected in 
equations (5) to (7). The pressure term in equadon (5) 
disappears, which means that the pressure gradient in 
the main flow direction is maintained at the value of 
basic state around the onset. Accordingly, the second 
term in the left-hand side of equation (6) is neglected. 
Hwang and Cheng[9] neglected all the disturbance 
terms involving the x-derivatives and Ahn and Choi[8] 
set u] to zero. Therefore the present disturbance equa- 
tk)ns are completely different from the previous 
ones. 

Now a new set of dimensionless variables is defin- 
ed by using the vertical length scale of the dimension- 
less thermal boundary layer thickness 6r : 

I u, #~ u* I~> 

i v, = #~,v*l~') - e x p ( a y )  (8/ 
w, #~-w* (~') 

8, 8* ([) 

where the superscript '*' refers to the transformed 
amplitude of each disturbance term and 'a' indicates 
the dimensionless wave number meaning the trans- 
verse periodicity of disturbances. Substituting equa- 
tions (4) and (8) into the resulting disturbance equa- 
tions (5) to (7), we can generate the new amplitude 
equations: 

1 [_  ~ ({"D-4  ~ h u * + 6 w * ) - ( D Z - a * : ) u  * (9) 
Pr 

1 [ -  ~ (~"D ' -a* '~"D+2a* '~ ' )w*]  
Pr 

_ (D~- a*~)w*-  a* '0  * (10/ 

15 ~.~D0.~Ra , (_ 5 - ~- . ~-~'u* fw*)D0o 

= (D 2 - a  .2) 0* (11) 

where D(.)= d(.)/d~', a*= ab'T and Ra*= Ra<fr. Ex- 
perimental evidences have shown that the new para- 
meters a* and Ra* having the vertical length scale of 
~'T would be kept constant for x_<0.113-5]. Up to this 
point the related concepts represent the essence of the 
propagation theory. It is surprising that the concept of 
local similarity is realized in this procedure. 

For the limiting case of Pr+oo the stability criteria 
were reported by Kim and Choi[l 1]. It is noted that 
their stability equations involving the effect of the 
Prandtl number are not quite general. But their stabili- 
ty criteria are exactly the same as those based on equa- 
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tions (9) to (11) since Ul disappears for the infinite 
Prandtl number case. Therefore we proceed to analyse 
the instability for the limiting case of Pr~0.  As the 
Prandtl number decreases, the corivective terms rela- 
ted wi~h u* and w* in equations (9) to (10) become im- 
portant. Then in the case of Pr--*0 the stability equa- 
tions can be formulated as 

~ F  (D)u~ ~a*~PrRa*D 0o (~"D - 5 ~)u~' 

for 0 < ~'< 1 (12) 

FiD)uo*= 0 for ~ '>1 (13) 

where 

= (D' + ~ ~"D - a*' ) ( ~"D' - a*' F (D) 

+ 2a*'  ~) (~*D- 4 ~') (14) 

The subscripts T and 'o' refer to the inner and the 
outer region of the thermal boundary layer, respective- 
ly. 

The proper boundary conditions are constructed as 

w * =  0"=  0 at ~ = 0 (15) 

u,* w,*0,*DW*-*0 as~'---*oo (16) 

These conditions satisfy those of flat surfaces, with con- 
stant temperature. Since a slip condition should be ap- 
plied to the case of Pr--R), the conditions of u* = Dw* 
= 0 at the bottom rigid boundary are relaxed. The cor- 
responding boundary conditions in terms of u* are 
produced from equations (9) and (10). The interface 
conditions at ~'= 1 are constructed by considering 
equations (12) to (13): 

D"u~*- D ~ * =  0 ; n = 0 , 1 , 2 , 3 , 4 , 5  (17) 

Now the problem is to find the minimum value of 
PrRa* and its corresponding wave number to satisfy 
all the above equations (12) to (17). These values are 
the critical conditions marking the onset of natural 
convection in the form of longitudinal vortex rolls. 

SOLUTION PROCEDURE 

The solution of the inner region of thermal boun.- 
dary layer is found by the Frobenius method as fol- 
lows: 

u~= Z C, f, (~) (18) 

where f/{ ~') = .~. B:. ~". C/is an arbitrary constant and 
B~n is obtained from the recursion formula generated 
from equation (12). By applying the boundary condi- 
tions (14), u,-* is easily obtained: 

u* = C , f .  + C . f .  + C , f ,  + C . f .  (19) 

where 
a *  2 a *~ 

f , = l -  -~ ~'~-- 1 ~  PrRa* ~" . . . .  + + +  20) 

f" = ~ - 15-57~- PrKa ~ • - + - + - (21) 

r a . 2  

f ,=~" + 21-iT~ PrRs* ~" - - - + + + (22) 

a .2 ~.~ 23a *~ 
f , = f ,  l n l ' - 4 - ~ f -  7200 [ 5 + _  + _  + _  (23) 

To obtain the solution of the outer region we divide 
equation (13) into two equations as follows: 

(D2+ ~ ~"D- a * ' ) Y  = 0 (24) 

~" ( D ' - a  *~) (~ 'D-2)  ~" (~ 'D- 4)uo*=Y (25) 

Equation (24) can be solved by employing the WKB 
method: 

5 ~., 

which satisfies the upper boundary condition of 0"-,-0 
i.e., Y---,0, as ,f.--.,c,~. By approximating this solution as 
the appropriate power-series forms, the solution of 
equation (25) can be found as follows: 

uo* = C , f , +  2 ~ ( e " * ~ ' - ' : ' ~ 0  Q,r ~ -  1 ) * + e - ' * ' "  " 

R ,  (~'- 1)* 1 (27) 

where 

f, ~ ( ~ - , _  3 , a** a *~ a*'  e ~'*~ 
Ta - ig ~-+gg ~.,- 5g ~') i6-- + 

a*Z a*S f~e-a*n 
( V ~ + ~ N r  ~ d~ (28) 

f ~ ' )  is the homogeneous solution of u*. The coeffi- 
cients Q~ and R~ can be easily obtained from the recur- 
sion formulae by fol lowing the procedure illustrated in 
the work of Yoo et aI.[15], which are valid near ~ = 1. 
The above solution satisfies the upper boundary con- 
ditions (16). 

The remaining interface conditions (17) make it 
possible to generate the following secular equation: 

f, f. f, f. f. 0 

f[" f'~" f~" f~." fi" 0 

f~', f~" f~', f~', f:' 0 

f~ f;~ f~.~ f~  f:J 6Y(1)-y,~(1)  

= 0 (291 
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Fig, 2. Base temperature  profile,  

where the superscript (n) indicates the order of differ- 
entiation with respect to ~. Once eigenvalues of PrRa* 
and a* are found, we can construct the stability dia- 
gram and obtain u*. Then w* and e* can be computed 
by using equations (9) and (10), respectively. The 
spanwise velocity v* can be found from the equation 
of continuity as follows: 

v * =  r 5 U*-- .~- ( r  4) Dw*]/a* 50) 

R E S U L T S  A N D  D I S C U S S I O N  

By involving the streamwise velocity disturbance 
u~ with ~ =0 the stability diagram is obtained in 

3 A  
Fig. 3 according to the procedure outlined in the prece- 
ding section. The solid curves indicate the present 
results, while the dotted curve represents those of 
Ahn and Choi{8] for the case of ul = 0 and-3dP-t 4:0. 
The present critical conditions are found: 3x 

PrRa*=92.2  and ar for P r ~ 0  (31) 

This means that for extremely small Pr and a'~ the se- 
condary flow of natural convection may occur with the 
three component velocity field of u~, v t and w~ char- 
ac.terized by the conditions (31), independently of 
time. If we invoke the principle of exchange of stabi- 
lities as usual, the magnitudes of disturbances will be 
amplified with time in the hatched unstable region but 
it will be deamptified with time in the stable region. 
'This principle excluding the possibility of wave insta- 
bilities has been used in most of thermal instability 
problems. For large Pr fluids this is justified by experi- 
mental evidences[2-8]. It is unfortunate that for extre- 
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Fig. 3. Stabil ity diagram,  

mely small Pr fluids its validity remains an unresolved 
problem. 

Ahn and Choi[8] obtained the critical conditions of 

PrRa* = 212.1 and a* = 3.14 with ul = 0 and cgp, 4:0. 
3x 

These values are almost two times higher than those 
in equation (31). Therefore the existence of u I seems to 
make the system more unstable. This is justified by ex- 
amining Fig. 4, which shows that at the critical condi- 
tion two convective heat transport terms of velocity 
disturbances have the same sign. It appears evident 

~0o that the t e r m u , ~ - h a s  the adverse effect on the stabi- 

lity in addition to the term �9 000 ~,~ ~ff-, on the contrary to 
30, 

the effect of the term Uo O7-" The last term is already 

known to have the stabilizing effect[l 1,12,15]. 
In order to examine the disturbance fields the am- 
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Fig. 4. Effect of convect ive  terms of velocity  distur- 
bances  at critical condi t ion .  
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Fig. 5. D i s t r ibut ion  of  a m p l i t u d e s  of  d i s t u r b a n c e s  at 

PrRa* -- 134.2 a n d  a* = 1.00. 

plitude functions of velocity and temperature distur- 
bances are normalized in terms of the maximum value 
of absolute magnitudes of w* and 0", respectively. The 
normalized amplitudes, the streamlines and the iso- 
therms of disturbances at two points placecl on the 
neutral stability curve 1 are plotted in Figs. 5 to 10 in 
turn. Though the velocity field of disturbance is three 
dimensional, it is, however, possible to introduce the 
stream function based on the axisymmetry in a y-z 
plane for a fixed x. And the isotherms given here in- 
dicate the temperature fluctuation of the secondary 
flow. At the point of PrRa* = 134.2 and a* -- 1.00 the 
velocity disturbances constitute semi-circular stream- 
lines in the projected y-z plane and the temperature 
disturbance is mainly confined within the basic ther- 
mal boundary layer. These are illustrated in Figs. 5 to 
7. The slip condition of u* at the bottom boundary 
gives birth to the streamwise velocity at ~=: 0. The 
counterclockwise movement  along the curve I is foll- 
owed by the another cellular motion over the lower se- 

r = o.o r  o.o r = o.o 

,7 / 05 \01 _01/ _05 \ 

/ ,\ 
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ay 

Fig. 6. S t r e a m l i n e s  of  d i s t u r b a n c e s  at  PrRa* = 134.2 

and  a* = 1.00. 
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Fig. 7. I s o t h e r m s  of  d i s t u r b a n c e s  at  PrRa" = 134.2 

a n d  a* = 1.00. 

rni-circular motion due to the inversion of the tem- 
perature disturbance, as shown in Figs. 8 to I0. The 
latter motion becomes smaller and finally fades away 
during the successive advance. The neutral stability 
curve 11 generates the almost regular ]ogitudina] 
vortex-type instabilities, as illustrated in Fig. 11. "Fhis 
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Fig. 8. D i s t r ibut ion  of  a m p l i t u d e s  of  d i s t u r b a n c e s  at 

PrRa* = 178.7 and  a" = 2.34.  
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Fig. 9. S t r e a m l i n e s  of  d i s t u r b a n c e s  at PrRa" = 178.7 

a n d  a* = 2.34.  
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Fig.  I0.  I s o t h e r m s  o f  d i s t u r b a n c e s  a t  PrRa"  = 1 7 8 . 7  

a n d  a ~ = 2 . 3 4 .  

figure represents those amplitudes for the minimum 
value of PrRa* on the curve II, and the disturbance 
patterns are similar to those in the work of Ahn and 
Choi[8]. Therefore it is expected that the distinction 
between the two inner curves will disappear at the 
high PrRa* region, wherein the lower semi-circular 
motion becomes negligible. 

The above-mentioned trend is very peculiar in 
comparison with the conventional stability diagrams. 
The curve I is very similar to that of wave instability 
and the curve II to that of regular longitudinal vortex 
instability. It is well known that the latter-type stabili- 
ty diagram prevails at large Pr cases[9.-12,15]. There- 
fore it may be stated that the resultant secondary mo- 
tion becomes simplified with an increase in Pr, leading 
to the regular vortex roll. Meanwhile through these 
figures it is known that the magnitude of v* is inver- 
sely proportional to the wave number according to 
equation (30). 

The conditions (31) marking the onset of natural 
convection for Pr-,0 are of much interest, here. The 
disturbance amplitudes decay so sharply for ~'>1. It 
should be noted that the present critical values are 

~: .5 ~ 
.2~ Z V *  \ 

< 
o 

:3 
7,_7 -.5 u *~ a* = 6.20 

PrRa* = 6454 

I I . . - -  

0 .5 1 

Fig.  I I. D i s t r i b u t i o n  o f  a m p l i t u d e s  o f  d i s t u r b a n c e s  

at  P r R a *  = 6 4 5 . 4  a n d  a* = 6 . 2 0 .  
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103 I 

L 
l0 , A , 0 

10-4 10-2 l00 102 104 
Prandtl Number. Pr 

Fig.  12. E f f e c t  o f  P r a n d t l  n u m b e r  o n  c r i t i c a l  c o n d i -  

t i o n s .  

2 

1 

valid if b'r 'r 1. By combining these values with the 
results of Kim and Choi[11] for Pr--,. oo, the critical con- 
ditions in the thermal entrance region may be repre- 
sented in the whole domain of Pr as follows: 

Ra~x~ =200 (I ~-0. 123/Pr) (32) 

a'r c = 2.02 ~1 - 0.088/ (Pr ~b0.211) ~ (33) 

These relationships are plotted in Fig. 12, which 
shows that the effect of the Prandtl number is almost 
negligible for P r> l .  In this connection more refined 
work is now in progress in our laboratory. a_~e. The present analysis involves the term uoa  x to 

stabilize the flow. Hwang and Cheng[9] neglected this 
term and they reported that for P e ~  oo the critical Ray- 
leigh number decreases with a decrease in Pr for a 
given xc. It seems evident that their critical conditions 

u r has the much are unreasonable, for the term O~x- 

stronger stabilizing effect in comparison with the des- 

tabilizing effect of the term Ra ul ~ in equation (7). 

The experimental evidences are available only for air 
[3-5] and water[8]. The present analysis makes predic- 
tions close to experimental data as compared in Fig. 
12. It is noted that the secondary motion of vortex-type 
convection will require a growth distance to manifest 
detection. The experimental study for small Prandtl 
number fluids is in great request. It is very interesting 
that the critical Rayleigh number predicted in this 
study is in good agreement with the experimental 
result given by Jorn6 and Labelle[16] for the electro- 
chemical mass transfer system. 

C O N C L U S I O N  

The onset of thermal instability in the thermal en- 
trance region of plane Poiseuille flow has been ex- 
amined by the propagation theory. For xc:<0.01 the 
critical Rayleigh numbers are represented by 

K o r e a n  J. Ch.  E. (Vol .  5 ,  No.  2)  
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Ra~ = 200(1 + 0.123Pr-l)x~ I 
under the conventional boundary layer theory. The 
present analysis introducing the three component 
velocity field of disturbance made predictions in close 
agreement with experimental data. It seems evident 
that the results of Hwang and Cheng[9] lose the validi- 
ty. 
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NOMENCLATURE 

a 
a* 

d 
g 
i 
P 
P 
Pe 
Pr 
Ra 
Ra* 
Re 
T 
Tt 

T2 

AT 

U,V,W : 

U m 

u ,  v ,  w : 

U o 

X,Y,Z : 
x , y , z  : 

dimensionless wave number 
modified wave number [=a6~] 
depth of fluid layer (m) 
gravitational acceleration (m/sec 2) 
complex number 
pressure (N / m 2) 
dimensionless pressure [= pd2/a//1] 
Peclet number [= PrRe] 
Prandtl number [= ~/a ] 
Rayleigh number [ = g ~'d',aT/a/l,l 
modified Rayleigh number [= R a i l  
Reynolds number [= U~d/~,] 
temperature (K) 
temperature of inlet flow and upper rigid 
boundary (K) 
temperature of heated bottom plate (K) 
temperature difference between bounda- 
ries [=T2-TI] (K) 
velocities in rectangular coordinates (m/ 
sec) 
mean basic flow velocity (m/sec) 
dimensionless velocities [=(U/Pe, V, W) 
d/a] 
dimensionless base flow velocity [=Ub/ 
U,,] 
positions in rectangular coordinates (m) 
dimensionless position [=(X/Pe, Y, Z)/d] 

G r e e k  Let ters  

A T 

O 
Oo 

01 

thermal diffusivity (m2/sec) 
thermal expansion coefficient (I/K) 
thermal boundary layer thickness (m) 
dimensionless thermal boundary layer 
thickness [= Arid] 
similarity variable [ = z/~'r] 
normalized isotherm of disturbance, 
dimensionless base temperature [=(T-Tt)/ 
,aT] 
dimensionless temperature disturbance 

I,I 

[= RaT' / AT] 
: viscosity (kg/m/sec) 
: kinematic viscosity (m2/sec) 
: normalized stream function of disturbance 

Subscr ip t s  
b : base quantity 
c : critical condition 
i : inner region of thermal boundary layer 
o : outer region of thermal boundary layer 
0 : dimensionless base quantity 
1 : dimensionless disturbance quantity 

S u p e r s c r i p t s  
n,(n) order of differentiation with respect to ~" in 

equations (17) and (29), respectively 
* amplitude function of disturbance 

disturbance quantity 
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